Extend your information reach without over stretching by virtualizing data using SQL Server 2019 and MongoDB – Part 2 SQL Server 2019

In this series of blog posts, I will explain how you can connect MongoDB to SQL Server 2019 using Polybase so that you have the benefit of both a schemaless and relational database technologies integrated and working together to form a modern data ecosystem that can handle both traditional and “big data”.

In my previous post I explained how to install and configure Mongo DB in an Azure VM running Linux. In this post I will walk you through the process of setting up SQL Server 2019, which is the area on the right of the diagram below.

Spin up Azure VM with SQL Server 2019

Microsoft has a pre-built VM with the latest release of SQL Server 2019 ( at the time of this writing it is CTP2.3) which makes it really quick and easy to setup. Simply navigate to your Azure portal and search for SQL Server 2019. You should see a Free SQL Server : (CTP2.3) SQL 2019 Developer option, once you select it you should see the following.

Click create and fill out the subsequent screens as follows.

Step 1 Basics

NOTE Be sure to remember the Username and Password because it will be required later when we connect to the VM and install Polybase.

Step 2 Size

I went for a DS2_v2 but you are free to pick a size that suites your needs. NOTE Microsoft recommends a DS2 or higher for development and functional testing.

Step 3 Settings

You will need to open a public inbound port (3389 RDP) so that you can remotely connect to it and install Polybase.

Step 4 SQL Server settings

This last step is optional. You can enable external connections directly into the SQL Server database which is handy if you want to connect to the database without having to log onto the VM. Once the VM is created we will need to log into it to install Polybase.

Install Polybase

Unfortunately, the pre-built VM does not have Polybase installed on it so you will need to log onto the VM and install. To connect to the VM go the resource in the Azure Portal and select Connect. You should see a screen like this.

Download the RDP file and enter the credentials you used when you first created the VM.

Once you have logged onto the VM you will need to navigate to the SQL Server 2019 installation software. You can find it here C:\SQLServerFull. Double click on setup.

In the SQL Server Installation Center menu select New SQL Server stand-alone installation or add features to an existing installation.

For the Installation Type select Add features to an existing instance of SQL Server 2019 CTP2.3

On the Feature Selection screen select PolyBase Query Service for External Data.

On the PolyBase Configuration screen select the first option. A PolyBase scale-out group is ideal for scenarios in which you have multiple external data sources that you want to connect to and you need to optimize performance.

We will use the defaults for Server Configuration.

Review the summary and click the install button. If all goes well you should see the following screen when complete.

In the next post I will explain how to configure Polybase to connect it to your MongDB database installed on separate VM. This setup allows you to extend your reach without overstretching by letting the data stay where it is but still making it available for integration and analytics with line of business application data.

Hopefully you have found this to be another practical post.

Until next time.


Instant insights, automation and action – Part 6 Integrate Power BI, Power Apps, Azure Machine Learning and Dynamics 365 using MS Flow

This is the last article in a 6-part series in which I will explain how you can integrate Power BI, Power Apps, Azure Machine and Dynamics 365 using MS Flow.

For reference here are the descriptions and links to the previous articles.

Instant insights, automation and action – Part 1 Create Power App

Instant insights, automation and action – Part 2 Create Azure Machine Learning Experiment

Instant insights, automation and action – Part 3 Create the Power BI Report

Instant insights, automation and action – Part 4 Register Power BI in Azure Active Directory

Instant insights, automation and action – Part 5 Integrate with MS Flow

In this article I will explain how you can kick off a MS Flow by adding an action to your Power App and then how you can integrate the Power App into a Power BI Dashboard. Data alerts can by tied to tiles in the Power BI Dashboard that can kick off additional flows which will insert records into Dynamics. The complete system is depicted in the diagram below.

Modify the Power APP

In Part 1 of this series we created a simple app that allowed a user to enter new sales data. We now need to go back to this app and modify it. Navigate to Power Apps and edit the app

Once the app is open click on the submit button to select it and then from the Action menu at the top select Flows.

This will open up a new pane in which you can select the flow that we created in Part 5 of this series. Once you have selected the flow enter the following code into the formula expression bar.


This will execute the flow and pass the data values from each of the text input boxes into the flow. You can test the flow by clicking on the play button in the top right-hand corner of the screen.

Save the report and publish it so that the new version with the flow attached to the submit button is available to integrate into Power BI.

Modify the Power BI Report

Next, we will need to modify the Power BI report to drop in a PowerApps visual. Open the Power BI report that we created in Part 3 and add a new custom visual from the marketplace. We need to add the Power App custom visual to the report.

Once the new visual has been successfully added we will add it to a new page in the report. In the Power BI report create a new page and call it Data Entry. We are doing this to keep the report clean and simple. We will integrate various visuals including the Power App in a Power BI Dashboard once we have finished putting the necessary polish in the report.

Drop the new visual onto the canvas of the new page in the report and add any field from the list of fields in the dataset, I used customer name. You should see a screen like the image below.

We are not creating or editing an app since we already built it in Part 1. Click ok and then select Choose app. Select the app we created for entering new whole customer sales data.

Click Add. You may see another warning about creating or editing the app, just ignore this by clicking ok.

New report page should now look like the image below.

Rename Page 1 and call it Wholesale Customer Report. You can spruce up the first page to make it look more appealing. I modified my report to make it look like this.

Once you are happy with the design of the report you need to publish it to Power BI. You can replace the existing report that we created in Part 3. Once the report has been published navigate to the cloud service and go the report that you just published.

Build the Dashboard

It’s now time to build a dashboard. With the report open pin the following visuals to a new dashboard.

To pin a visual to a dashboard click on the visual and select the pin from the menu bar.

A menu like the one below will pop up. Give the new dashboard a name such as Wholesale customer dashboard.

Select pin to create and add the visual to the new dashboard. Repeat this for all of the card visuals in the report except instead of selecting New Dashboard select Existing dashboard and if not already selected pick the Wholesale customer dashboard that we just created.

Next, we will need to pin the Power App visual. Go to the Data Entry page and pin the Power App just like we did for the card visuals. If you are having trouble selecting the pin option you may need to edit the report to pin the visual.

Your dashboard should now look something like this.

Let’s rearrange the tiles and add some new visuals by using Q&A.

First add a new visual by typing the following questions in the Q&A bar at the top of the screen.

Fresh by customer sort by fresh

Pin the visual to the existing Wholesale customer dashboard.

Then place this at the bottom of the dashboard.

Repeat these steps using the following questions:

Milk by customer sort by milk

Grocery by customer sort by grocery

Frozen by customer sort by frozen

Detergent paper by customer sort by detergent paper

Delicassen by customer sort by delicassen

Your dashboard should now look similar to the image below.

Try adding a new customer by using the Power App embedded in the Power BI Dashboard. After you have entered data into each of the input boxes in the Power App hit the submit button and in about 5 seconds or less you should see the customer count go up and your new customer on the dashboard in real-time. Also try entering in a new customer but do not fill out the Category field blank. Notice how even though the field is blank it is still populated by the time it shows up in Power BI, that is because the Azure Machine Learning model is supplying this data.

Integrate with Dynamics 365

The last step is to add a data alert to one of the tiles which will create a record in Dynamics 365. Navigate to the dashboard if not already there and click the … in the top right hand corner of the Fresh tile.

Then select Manage alerts.

This will open a new menu on the right-hand side of the screen. From this screen click + Add alert rule. Create an alert that will fire once the Fresh goes above a certain value. In my case I used 60,000.

For the purposes of this tutorial an alert based on an absolute value is adequate however a better choice would be to create an alert on a relative value such as % change since you do not want to have to go in and modify the alert to increase its threshold every time you surpass it. Click Save and close.

Go back to Manage alerts for this tile (Fresh) and this time select Use Microsoft Flow to trigger additional actions.

This will launch MS Flow. Use the default template to create a new flow triggered from a Power BI alert.

Use the template and select the Alert for Fresh from the Alert id drop down menu. Next select add new step and search for Dynamics 365. Then select Create a new record Dynamics 365.

Your flow should now look like this.

Enter the details for the Dynamics 365 tenant and select the Entity that you want a record created in. For my purposes I created a new task to follow-up with the customer by using the tasks entity. Save the flow and test it out by entering in new sales data using the Power App embedded in the Power BI report. If you have wired up the flow correctly a new record should be created in Dynamics 365 once you have triggered the data alert in your Power BI dashboard.

We have now reached the end of this series hopefully you have realized that by combining Power BI, Power Apps, Flow, Azure Machine Learning and Dynamics 365 you can open up new possibilities which lead to insights, automation and action at the speed of business.

Until next time.


Instant insights, automation and action – Part 4 Register Power BI in Azure Active Directory

This is the fourth post in a series of articles in which I explain how to integrate Power BI, Power Apps, Flow, Azure Machine Learning and Dynamics 365 to rapidly build a functioning system which allows users to analyze, insert, automate and action data.

In the previous article I covered building the Power BI Report.

In this article I will cover how to enable data to be pushed into Power BI use Flow. This is a fast no code solution.

This is a one-time setup that is required in order to use the Power BI connector in MS Flow. If you do not do this step you will see an error screen in MS Flow like the screen clip below.


In order to complete this tutorial, you will need permission to register applications in your Azure Active Directory tenant.

For more information on the Azure AD Tenant you can click the following link.


Power BI Development Center

Log onto the Power BI Development Center and enable API features and get the key to register the app in Azure.

Go to the following URL and sign in.


Enter in a meaningful name for your app, I called mine AnthonysPowerBIApp but you can call yours whatever you would like. Choose Native for the Application Type and select Read all datasets and Read and write all datasets for the API Access

Click on Register. A screen like the one below should pop up. Be sure to copy down the Application ID as this is needed to register the application in Azure.

Azure Portal

Next log onto the azure portal using the following URL https://portal.azure.com/#home

Once in the portal admin page navigate to the Azure Active Directory menu blade

Next click on App registrations and select the app that we created using the Power BI Development Center.

You can change settings in the app if you whish to tailor it be clicking on Properties.

Now that the Power BI App has been registered in Azure Active Directory you can use it in various Microsoft cloud services such as Flow.

As you can see in the image above, I no longer get a permission error and I am able to select the workspace, dataset and table.

In the next post we will build out the flow so that data is passed from the Power App to an Azure Machine Learning experiment for scoring and then into the Power BI API Enabled Dataset for real-time analytics.

Hopefully you have found this to be another practical post.

Until next time



Here is the official documentation from Microsoft on how to register Power BI to push data into it using REST API calls.


Instant insights, automation and action – Part 3 Create the Power BI Report

This is the third post in a series of articles in which I explain how to integrate Power BI, Power Apps, Flow, Azure Machine Learning and Dynamics 365 to rapidly build a functioning system which allows users to analyze, insert, automate and action data.

In the previous article I covered building the Power App. In this article I will cover the Power BI report.

We will build out this system in the following order; Power App, Azure Machine Learning, Power BI and then last MS Flow to connect the components. Before you can begin this tutorial there are some required prerequisites.


  • Power Apps
  • MS Flow
  • Power BI Pro or Premium
  • Access to Azure Active Directory to register Power BI App
  • Dynamics 365

Create the API Enabled Dataset

Log onto Power BI and create a new app workspace called Customer Segmentation. This step is not required however if you are like me you create a lot of different content so it’s a good habitat to get into so that you can better manage your work.

In case you are wondering the screen clip above is using the new App Workspace experience. Next, we will create a new streaming data set.

On the splash page for the app click Skip at the bottom right corner of the page.

Now select +Create > Streaming dataset.

Select API and click next.

Next create the WholeSaleCustomer dataset.

It will have the following field names and data types

Field Name Data Type
Customer Name Text
Channel Number
Region Number
Fresh Number
Milk Number
Grocery Number
Frozen Number
Detergents_Paper Number
Delicassen Number
Category Number

Click the Create button to generate the dataset.

Next, we will leverage the generated PowerShell script to create some test records in our newly formed dataset. Click on PowerShell and copy the code into Notepad.

We will create three test records by running the PowerShell code below. Modify the code you coped into Notepad so that it looks simlar to the code below. Before you can run this you will need to replace <Your Key> with the key displayed in your Power BI service.

$endpoint = "https://api.powerbi.com/beta/8c17d9d4-2652-4573-8a9c-d5dde0750715/datasets/13b74183-5eb2-480b-ba11-c0af0ecbdd26/rows?
key=<Your Key>

$payload = @{
"Customer Name" ="Test1"
"Channel" =1
"Region" =1
"Fresh" =98.6
"Milk" =98.6
"Grocery" =98.6
"Frozen" =98.6
"Detergents_Paper" =98.6
"Delicassen" =98.6
"Category" =0

Invoke-RestMethod -Method Post -Uri "$endpoint" -Body (ConvertTo-Json @($payload))
$payload = @{
"Customer Name" ="Test2"
"Channel" =2
"Region" =2
"Fresh" =98.6
"Milk" =98.6
"Grocery" =98.6
"Frozen" =98.6
"Detergents_Paper" =98.6
"Delicassen" =98.6
"Category" =1

Invoke-RestMethod -Method Post -Uri "$endpoint" -Body (ConvertTo-Json @($payload))
$payload = @{
"Customer Name" ="Test3"
"Channel" =3
"Region" =3
"Fresh" =98.6
"Milk" =98.6
"Grocery" =98.6
"Frozen" =98.6
"Detergents_Paper" =98.6
"Delicassen" =98.6
"Category" =2

Invoke-RestMethod -Method Post -Uri "$endpoint" -Body (ConvertTo-Json @($payload))

To do this launch PowerShell in Administrator mode and copy and paste the code into the PowerShell desktop app.

The data set now has three records in it and you can start to use it in Power BI. To do this go to the dataset and click the three dots beside the name of the dataset. This will open a new report with a blank canvas. Add a table and drop all of the fields from the data set into the visual.

As you may notice from the screen shot above the fields Fresh, Milk, Grocery, Frozen, Detergents_Paper and Delicassen are not formatted as currency but should be. Unfortunately, API enabled data sets only have three data types Text, Number and Date and no formatting options so we cannot specify that these fields are currency fields.

Thankfully we can leverage the Report level measures for live connections to Analysis Services tabular models & Power BI service datasets feature that was released in May 2017 to add new measures with the proper currency data type defined.
Continue reading “Instant insights, automation and action – Part 3 Create the Power BI Report”